Assignment One | |
|
|
1.
[4 marks] |
|
Show the following formulas to be S5-Valid. Use the S5 rules given in chapter 2, i.e.
Pr, MN,
<>S5, []S5, []T.
a.
[][](p É
p) b.
<><>p
É
<>p |
|
2.
[4 marks] |
|
Translate the following arguments into S5 and test for validity. Create your own dictionary (ignoring tense changes and other grammatical irrelevancies.) Use the
S5 rules given in chapter 2, i.e. Pr,
MN, <>S5, []S5,
[]T. a.
If I am to see the Olympics then I’ll need to
travel to b.
It is necessarily true that if I know that there will
be a sea battle tomorrow, then there will be a sea battle tomorrow. Therefore if
I know there will be a sea battle tomorrow, the sea battle tomorrow is
necessary.
|
|
3.
[4 marks] |
|
Show
that each of the following formulas is valid in K. a.
[]p É
(<>q
É
<>(p & q)) b.
<>(p É
q) º
([]p É
<>q)
|
|
4.
[4 marks] |
|
Each
of the following formulas is valid in at least one of T, S4, and S5. What is the
weakest logic in which each is valid? Show this with a truth tree.
(The truth tree is the important part.) a.
[](p É
[]<>p) b.
(<>~p v <>~q)
v <>(p v q) |
|
5.
[4 marks] |
|
a.
Give a counterexample in S4 for [](p É
[]<>p) b.
Give a counterexample in K for (<>~p v <>~q)
v <>(p v q) |
|