Previous | LECTURES | Next |
Definition: x is infinitely close to y, x » y, iff x -* y Î I
Theorem: » is an equivalence relation on R*.
Proof: (Reflexivity) 0 Î I Þ x -* x Î I.
(Symmetry) x -* y Î I Þ y -* x Î I because of closure under ±*.
i.e. the negative of an infinitesimal is also an infinitesimal.
(Transitivity) x -* z = (x -* y) +* (y -* z) Î I because of closure again.
Theorem: If u » v and x » y, then u +* x » v +* y, and -*u » -*v
Proof: (u +* x) -* (v +* y) = (u -* v) +* (x -* y) Î I because of ±* closure.
Theorem: If u » v and x » y, and u, v, x, y Î F, then u .* x » v .* y
Proof: (u .* x) -* (v .* y) = (u .* x) -* (u .* y) +* (u .* y) -* (v .* y)
= u .* (x -* y) +* (u -* v) .* y
Î I because of closure of I under multiplication by elements of F.
Theorem: If ~ (u » v) and x Î F or y Î F then $q Î R x <* q <* r
Proof: Suppose wolog 0 £* x <* y
~(x » y) Þ $b 0 <* b <* y -* x
x Î F Þ $m Î Z* x <* mb
Take the least such m, then x <* mb <* y
This follows since (m-1)b £* x Þ mb £* x +* b <* y