Previous | LECTURES | Next |
Example 6
Test for validity ("x)ØF(x,x) ® ($x)("y)ØF(x,y).
' 1. Ø(("x)ØF(x,x) ® ($x)("y)ØF(x,y)) N
a2 a1 \ 2. ("x)ØF(x,x) 1
' 3. Ø($x)("y)ØF(x,y) 1
a2 a1 \ 4. ("x)Ø("y)ØF(x,y) 3, QN
5. ØF(a1,a1) 2, UI
' 6. Ø("y)ØF(a1,y) 4, UI
a2 ' 7. ($y)ØØF(a1,y) 6, QN
' 8. ØØF(a1,a2) 7, EI
9. F(a1,a2) 8
10. ØF(a2,a2) 2, UI
' 11. Ø("y)ØF(a2,y) 4, UI
a3 ' 12. ($y)ØØF(a2,y) 11, QN
' 13. ØØF(a2,a3) 12, EI
14. F(a2,a3) 13
etc...
This branch will never be closed. It will eventually contain an arbitrarily long sequence of wff F(an,an+1) and ØF(an,an). It will have used a sequence of constants a1, a2, ... an, ...
We construct a model for the test wff's counterexample with domain {a1, a2, ... } = | A |
Define FA such that FA = {(an, an+1) | n in the Naturals}
Then |=A ("x)ØF(x,x) but |¹A ($x)("y)ØF(x,y)
So |¹A ("x)ØF(x,x) ® ($x)("y)ØF(x,y)