Week Two
Useful Lemmata
 

 
Lemma 1
|_    
Lemma 2
|_   
Lemma 3
|_   (  ) 
Lemma 4
|_   ((  ))
Lemma 5
|_ (  ) (( )  )
 

Deduction Theorem
 

Theorem
Let  be a set of wffs; ,  wffs. If ,  |_  then  |_   

and consequently; if  |_  then |_   
Proof 
Let 1, ..., n (with n = ) be a proof of  from 
Show by induction on i (1  i  n) that  |_   i
1.
For i = 1 there are 3 cases
1   or 1  {PS.1, PS.2, PS.3}, or 1 = 
i.
Suppose 1  
By PS.1:
1  (   1)
By MP:

 |_   1 
ii.
Suppose 1  {PS.1, PS.2, PS.3},
The result holds as for the previous case.
iii.
Suppose 1 = 
By Lemma 1:
|_    so |_   1
 


2.
Assume  |_   k for k < i
Now there are 4 cases. The three as before which are proved as before, and
iv.
j,m < i with m = j  i and i follows from m by MP
By Hyp:
 |_   k and 
 |_   (j  i)
By PS.2:
|_ (  (j  i))  ((  j)  (  i))
By MP:

 |_ (  j)  (  i)
By MP:

 |_   i
 

Theorem
Let p1, ..., pk be propositional variables in wff  and let t be an assignment;
Define
pi' = pi if Val (pi, t) = T, pi otherwise
' =  if Val (, t) = T,  otherwise
Then p1', ..., pk' |_ '
Example
        p0   p1   p0  (p0  p1)
        -------------------------
        1    1    0   1     1
        1    0    0   1     1
        0    1    1   1     1
        0    0    1   0     0
For line 4 we can get the deducibility relation
p0, p1 |_ (p0  (p0  p1))
Proof
By induction on n, the number of ,  in .
1.
Let n = 0. Then  = p1.
Theorem holds because p1 |_ p1 and p1 |_ p1
2.
Suppose true for j < n, then there are two cases:
Either  =  or  =   
(i)
Let  = .  has < n occurrences of , .
Then, by hypothesis, p1', ..., pk' |_ '
(a)
Let Val (, t) = T, then  gets F, 
So ' = , ' =   
By hypothesis:

p1', ..., pk' |_ 
By Lemma 2 + MP:
p1', ..., pk' |_  and  = '
(b)
Let Val (, t) = F, then ' = , ' = 
By hypothesis:  p1', ..., pk' |_ , but ' =  
 

(ii)
Let  =   . ,  have < n occurrences of , .
Then, by hypothesis, p1', ..., pk' |_ ' and p1', ..., pk' |_ '
(a)
Let Val (, t) = F, then  gets T, 
So ' = , ' = 
By hypothesis:
p1', ..., pk' |_ '
By Lemma 3:
p1', ..., pk' |_    and    = '
(b)
Let Val (, t) = T, then  gets T. So ' =  and ' = 
By hypothesis:  p1', ..., pk' |_ 
By PS.1:  p1', ..., pk' |_   , but    = '
(c) Let Val (, t) = T, Val (, t) = F; 

then  gets F, ' =  and ' = 
By Hypothesis:
p1', ..., pk' |_  and p1', ..., pk' |_ 
By Lemma 4:
p1', ..., pk' |_ (  ) but (  ) = '
 

Completeness
 

Theorem
If |=  then |_ 
Proof
Assume |= , and let p1, ..., pk be propositional variables in .
For any assignment t to p1, ..., pk we have p1', ..., pk' |_ 
By previous Theorem and the fact that ' = 
 

If Val (pk, t) = T then p1', ..., pk-1', pk |_ 
By the Deduction Theorem: p1', ..., pk-1' |_ pk  
 

If Val (pk, t) = F then p1', ..., pk-1', pk |_ 
By the Deduction Theorem: p1', ..., pk-1' |_ pk  
 

By Lemma 5 + MP: p1', ..., pk-1' |_ 
 

Continue until all pi are eliminated.
 

Introduction to the Predicate Calculus
 

The Language L1
L1, the language of predicate calculus
(a)    
Vocabulary
predicates:
, P0, P1, P2, ...
Terms
variables:
v0, v1, v2, ...
constants:
c0, c1, c2, ...
functions:
F0, F1, F2, ...
(b)
Logical symbols
Quantifiers:
,
Connectives:
,,,,
(c)
Non-logical symbols
Brackets:
(, )
Formation Rules
(i)
Terms:
(a)
Any variable or constant is a term.
(b)
If Fi is an n-place function symbol and t1, ..., tn are terms then Fi (t1, ..., tn) is a term.
(ii)
Atomic Formulae:
If Pi is an n-place function symbol and t1, ..., tn are terms then Pi (t1, ..., tn) is a Formula.
In fact these particular formulae are called Atomic Formulae. 
(They are fundamental building blocks of 1st order logics as the propositional variables are for Propositional Calculus.)
(iii)
Formulae 
(a)
If , , are formulae then so are (  ), (  ), (  ), (  ),  
(b)
If  is a formula and v a variable then v, v are formulae
(v)
Only strings of symbols constructed according to these rules are wff of L1.
 

So the string
v1v0 (P0 (v1, c0)  P0 (v0, c0))
is a formula, 
But
v1v0 (P0 (v1, c0)  P0 (v0))
is not
Definitions
Using 
, , , ... for formulae of L1
x, y, z, ... for variables
t for terms
 

In formulae x and x,  is called the scope of the quantifier
An occurrence of a variable, x, is bound in a formula  if:
(i)
it occurs immediately after a quantifier, e.g. x, or
(ii)
it occurs in the scope of such a quantifier
 

An occurrence of a term t is free in a formula  if 
(i)    it is a constant or 
(ii)    it is a variable that is not bound  
 

So, for instance, in the formula
xy (P0 (x)  P1 (y))   P2 (y) 
the first two occurrences of y are bound but the 3rd is not. 
Semantics for L1
  

An interpretation or structure, A, for L1 consists of:
(a)
A non-empty set A (the domain of quantification)
(b)
For each predicate symbol Pi of L1 a relation Ri on A. 
If Pi is n-place then Ri is n-place.
(c)
For each function symbol Fi of L1 an operation or function fi on A. 
If Fi is n-place then fi is n-place.
(d)
For each constant symbol ci of L1 some element Ci of A.
We write A = <A, R0, R1, ..., f0, f1, ..., C0, C1, ...>
 

Given a structure A for L1, an assignment of values to the variables of L1 is a sequence a = <a0, a1, ...> from A
 

An assignment of values to variables allows us to give an interpretation to the terms in L1 wrt the structure A in an obvious way.
(i)
vi[a] = ai, and ci[a] = Ci
(ii)
Fi (t1, ..., tk) [a] = fi (t1[a], ..., tk[a]) 
Examples of Interpretations
Example 1
L  L1: contains P0, F0, F1, c0 
F0 (F0 (v1, v2), F1 (c0, v0)) is a term, t, in L.
Suppose we have a structure N = <N, <, +, x, 0> and assignment a = <2, 4, 6, ...>
tN[a] is the interpretation of the term t in N
tN[a] 
= F0 (F0 (v1, v2), F1 (c0, v0))N[a]
= F0 (v1, v2)N[a] + F1 (c0, v0)N[a]
= (v1N[a] + v2N[a]) + (c0N[a] x v0N[a])
= (4 + 6) + (0 x 2)
= 10
Example 2
Let L and t be as in Example 1
Suppose we have a structure M = <2{a, b, c}, , , , > and 
assignment a = <, {a}, {a,b}, {a, b, c},  ...>
tM[a] is the interpretation of the term t in M
tM[a] 
= F0 (F0 (v1, v2), F1 (c0, v0))M[a]
= F0 (v1, v2)M[a]  F1 (c0, v0)M[a]
= (v1M[a]  v2M[a])  (c0M[a]  v0M[a])
= ({a}  {a,b})  (  )
= {a,b}
Substitution and Evaluation
Given an assignment a = <a0, a1, a2, ...> from A and an element x in A, we write a(i|x) for the new assignment a = <a0, a1, ..., ai-1, x, ai+1, ...> which we get by replacing ai by x in a.
We can now give truth values to our formulae relative to a structure and an assignment of values for free variables.
Let A be the structure as before and  a formula 
Define Val (, A, a) by induction as follows
(a)
For atomic formulae:
Val (Pi (t1, ..., tk), A, a) = T iff Ri (t1A[a], ..., tkA[a])
(b)
If  has the form , , , , , 
then Val (, A, a) is obtained from Val (, A, a) and Val (, A, a) using truth tables.
(c)
If  has the form vi then Val (, A, a) is T iff 
for all x in A Val (, A, a(i|x)) = T
(d) If  has the form vi then Val (, A, a) is T iff 
there is at least one x in A for which Val (, A, a(i|x)) = T
Examples of Evaluations
Example 3
Let L, N, and a be as in Example 1 above.
v0v1P0 (v0, F0 (v1, c0)) is a formula, , in L.
Val (,N, a) is the valuation of  in N under the assignment a
Val (,N, a) = T iff for all x in N Val (v1P0 (v0, F0 (v1, c0)), N, a(0|x)) = T
iff for all x in N there is at least one y in N such that 
Val (P0 (v0, F0 (v1, c0)), N, a(0|x)(1|y)) = T
iff for all x in N there is at least one y in N such that 
v0N [a(0|x)(1|y)] < F0 (v1, c0)N [a(0|x)(1|y)]
iff for all x in N there is at least one y in N such that x < y + 0
We can choose y = x + 1
Example 4
Let L, M, and a be as in Example 2
Let  be as before
Val (,M, a) is the valuation of the formula  in M under the assignment a
Val (,M, a) = T iff for all x in 2{a, b, c} there is at least one y in 2{a, b, c} such that x  y  
We can choose y = {a, b, c}
