Week Three
Definitions
 

a.
If Val (,A, a) = T or is true for some wff  of L1, for all assignments of values to free variables a and some structure A, we say 
i.
A is a model for , and 
ii.
 is satisfied by A, and we write
iii.
A |=  (or |=A 
 

b.
If  is a collection of wff of L1 and for any wff  in  A |= , we say that
i.
A is a model for , and 
ii.
 is satisfied by A, and we write
iii.
A |=  (or |=A 
 

c.
We say  is satisfiable if there is at least one model for 
 

d.
We say  is valid if every structure, A,  is a model for , and we write |= 
 

e.
We say  logically implies   if every model of  satisfies , and we write  |= 
Properties of Satisfaction
 

Suppose there are no free variables in , 
1.
A |=  iff A |  
2.
A |=  iff A |= A |=  
()
A |=  iff Val (, A, a) = T for all assignments a to FV () 
[FV () is the set of free variables in .]
             

iff Val (, A, a) = F or Val (, A, a) = T  
Suppose A |=  then Val (, A, a) = T
 Val (, A, a) = T
()
Suppose A |=  A |=  and A |  
Then Val (, A, a) = F 
 Val (, A, a) = F 
 Val (, A, a) = F 
Similar results hold for other connectives
3.
A |= vi A |= [a(i|x)] for all x in A
Some significant tautologies (valid wffs) are

1.
|= vi vi
2.
|= vi vi
3.
|= vi vi
4.
|= vi vi
These are trivial when  has no free variables (i.e. FV () = )
Consider 1. where FV (vi) = {u1, ..., uk}
Show A |= u1, ..., uk(vi(vi, u1, ..., uk) vi(vi, u1, ..., uk)) for all A 
i.e. A |= vi(vi, a1, ..., ak) vi(vi, a1, ..., ak) for a1, ..., ak in A (i.e. an arbitrary assignment)
From the known properties of satisfaction we have that 
A |= vi(vi, a1, ..., ak)
 A | vi(vi, a1, ..., ak)
it is not the case for all assignments b that A | (b, a1, ..., ak)
there is a b in A such that A | (b, a1, ..., ak)
there is a b in A such that A | (b, a1, ..., ak)
A | vi(vi, a1, ..., ak)
Case 2. is similar.
Cases 3. and 4. follow from 1. and 2.
Some Common Classes of Structures
 

For a set of sentences , let mod () be the class of all models of 
 

Example 1.    

Consider the set of sentences  = {1, 2, 3} where
1 = v0v1v2(P0v0v1  (P0v1v2  P0v0v2)) [transitivity]
2 = v0v1(P0v0v1  (v0v1  P0v1v0)) [linearity]
3 = v0v1(P0v0v1  P0v1v0)) [antisymmetry]
then the elements of mod () will be the sets linearly ordered  by R0 in <A, R0>.
If we add
4 = v0v1(P0v0v1  v2(P0v0v2  P0v2v1)) [density]
5 = v0v1v2(P0v1v0  P0v0v2) [no endpoints]
then the elements of mod () will be the structures <A, R0> where R0 is a dense linear order without endpoints on A. E.g. < Reals, < >.
Identity
 

We've been using the predicate symbol '' to represent identity but of course it is really just an arbitrary symbol. In order to justify the interpretation as identity we have to assume the following:
[I1]
v0(v0  v0)
[I2]
v0v1((v0  v1)  (v1  v0))
[I3]
v0v1v2(((v0  v1)  (v1  v2))  (v0  v2))
[I4]
v0,1,v0,2, ...,v0,n,v1,1,v1,2, ...,v1,n (1in(v0,i  v1,i)  (t(v0,1,v0,2, ...,v0,n)  t(v1,1,v1,2, ...,v1,n)))
and  v0,1,v0,2, ...,v0,n,v1,1,v1,2, ...,v1,n (1in(v0,i  v1,i)  ((v0,1,v0,2, ...,v0,n)  (v1,1,v1,2, ...,v1,n)))
      
I4 has variables for terms and formulae. It is an axiom schema.
The axioms I1, I2, I3 make  an equivalence relation.
I4 makes  a congruence wrt all relations.
Example 2 

Consider the set of sentences  = {1, 2, 3} where
1 = v0v1v2(F0 (v0, F0( v1, v2))  (F0 (F0 (v0, v1), v2))
[associativity]
2 = v0((F0(v0, c0)  v0)  (F0(c0, v0)  v0))

[identity]
3 = v0((F0 (v0, F1( v0))  c0)  (F0 (F1( v0), v0)  c0))
[inverse]
then the elements of mod () will be groups.
 

E.g. For the language L = < , F0, F1, c0 > consider the interpretation 
G = < G, =, ., -1, e >
If` G |=  then G is a group.
If G |=   {v0v1((F0(v0, v1)  (F0(v1, v0)))} then G is an Abelian group.
 

Example 3 

Consider the set of sentences  = {1, 2} where
1 = v0v1(P0v0v1  P0v1v0)) [symmetry]
2 = v0P0v0v0
If G |=  then G is a graph.
Definitions 
For any wff  of L0 (ie. of Propositional Calculus) with propositional variables from among pi1, ..., pik we can form a wff  of L1 (Predicate Calculus) by replacing each of the pi in  by a corresponding i from i1, ..., ik where these are a list of not necessarily distinct wff of L1. In this case we call  a (uniform) substitution instance of .
In all that follows let x, y, be variables, t and term and  a wff of L1.
We say that t is substitutable for x (or free for x) in  iff
a.
 is atomic
b.
if  is , , , , , for wff  then t is substitutable in  just if it is substitutable in  and .
c.
If  is y or y for wff  t is substitutable for x in  iff either 
1.
x doesn't occur free in , or 
2.
y doesn't occur in t and t is substitutable for x in .
If  is a wff of L1 we write (x|t) for the formula which results from replacing all free occurrences of x in  by t.
A Deductive Calculus for L1 
The formal system QS consists of six axiom groups and two rules of inference
Axioms
[QS1]
all substitution instances of the tautologies of L0
[QS2]
(x  (x|t)) where t is substitutable for x in  
[QS3]
(x(  )  (  x)) where x is not free in  
[QS4]
(x  x)
and two groups of wff relating to equality
[QS5]
(x (x  x))
[QS6]
(xy (x  y)  (  ') where y is substitutable for x in  and ' arises from  by replacing some (not necessarily all) free occurrences of x in  by y.
Rules of Inference
[MP]
We say that  is a consequence of formulae  and    by Modus Ponens
[Gen]
We say x is a consequence of  by Generalization
Definitions 
 

For any collection of wff, , we say a Proof of  from  is a finite sequence of formulae 1, 1, ..., n, such that n is , and for each 1  i  n 
a.
i is an axiom of QS    
b.
i is in  
c.
there are j, k < i such that i is a consequence of j and k by MP
d.
there is j < i such that i is a consequence of j by Gen
We write  |_  if there is a proof of  from 
We write |_  if there is a proof of  from the axioms of of QS alone. In this case we say that  is a theorem of QS or Predicate Calculus.
QS1: Substitution Instances of Tautologies 
 

The axiom PS1 of the propositional calculus yields tautologies such as

                p1  ( p2  p1 )
Let p1 = 1, p2 = 2. Then wff in L1 of the form
                1  ( 2  1 ) 
are axioms of L1
Let 1 =  v0P0 (v0, c1), 2 =  F0 (c0, c1)  c2. Then
                v0P0 (v0, c1)  ( F0 (c0, c1)  c2  v0P0 (v0, c1) ) 
is an axiom of L1. Similarly for
                P0(c0)  ( P0(c0)  P0(c0) )
Variable Capture in Substitutions 
  

We can substitute a term t for a free variable v in L1 formula . Call it (v|t)
E.g.
 = v1P0 (v0, v1)
t = F0 (v2, v3)
(v0|t) = v1P0 (F0 (v2, v3), v1)
This process may introduce new bound occurrences of variables 
E.g.
 = v1P0 (v0, v1)
t = v1
(v0|t) = v1P0 (v1, v1)
This is not always acceptable. 
E.g.
A = < A, R0 >, where
A = {a, b}
R0 = {<a,b>, <b, a>}
Freedom in Axioms 
 

QS2:
 = v0  (v0|t) where t is free for v0 in t
Ex.1:
 = v1(v0  v1)
t = F0(v3) is free for v0 in  
' = v0v1(v0  v1)  v1(v0  v1)(v0|F0(v3)) 
= v0v1(v0  v1)  v1(F0(v3)  v1)
Ex.2:
t = F0 (v1) is not free for v0 in  
'' = v0v1(v0  v1)  v1(v0  v1)(v0|F0(v1)) 
= v0v1(v0  v1)  v1(F0(v1)  v1)
v   is an instance of QS2.
 

QS3:
 = v0(  )  (  v0 ) where v0 is not free in
Ex.1:
 = P0(v0)
v0 is free in 
 = F0(v0, c0)  c1 
' = v0(P0(v0)  F0(v0, c0)  c1)  (P0(v0)  v0F0(v0, c0)  c1) 
Ex.2:
 = P0(c0)
v0 is not free in 
'' = v0(P0(c0)  F0(v0, c0)  c1)  (P0(c0)  v0F0(v0, c0)  c1) 
Soundness 
Theorem

If A |=  and  |_  then A |=  for any structure A, set of wffs , and wff 
 Proof


Easy. Do it for an exercise.

Deduction Theorem 
 

The Deduction theorem of propositional calculus does not carry over into Predicate Calculus without modification
Example:
It doesn't follow from  |_ v0that |_ v0
Consider a wff P0(v0) and an interpretation A = < A, R0 > with A = {a0, a1, ...}, R0 = {a0}
Then  = P0(v0) is satisfied by an assignment b, where b0 = a0, 
but v0P0(v0) is satisfied by no assignment b.
Thus P0(v0)v0P0(v0) is not true in this interpretation
so ~ |P0(v0)v0P0(v0) 
But by soundness we know that, for any wff , |_ | 
So ~ |_ P0(v0)v0P0(v0)
Deduction Theorem 
If there is a proof that , |_  that does not use Gen on a variable free in  then  |_    
Proof 
By induction of the length of the proof. (C.f. Propositional case)
We combine the initial step and the induction step.

Let 0, 1, ..., n = , be a proof , and  a wff satisfying the assumptions
Show  |_   i for all i  n.
1.
i  or QSn,
then  |_   i since i  (  i)
2.
i = , 
then  |_   i since    is a tautology
3.
For j, k < i where k = j  i by MP
Suppose by hypothesis:  |_   j and  |_   (j  i) 
By axiom/tautology PS2: |_   (j  i)  ((  j)  (  i)
By MP (x2):  |_   i
4.
For j < i where i = vj by Gen.
Suppose by hypothesis: v is not free in  and  |_   j 
By Gen:  |_ v(  j)
By Axiom QS3 and v not free in  we have v(  j)  (  vj) 
So, by MP:  |_   vi        
Deduction Theorem Example
Show 

|_ v0v1  v1v0 
Proof 
1.
v0v1


Hyp
2.
v0v1  v1

QS2
3.
v1


1, 2, MP
4.
v1  

QS2
5.



3, 4, MP
6.
v0


5, Gen
7.
v1v0


6, Gen
So we have shown that v0v1 |_ v1v0 
and no application of Gen has quantified a variable free in v0v1 
By Deduction Theorem then |_ v0v1  v1v0 
Contraposition
 

Theorem
 |_  with a proof that doesn't use Gen on a variable free in . Then  |_  
Proof 
1.
 |_ 



Assumption
2.
 |_   


Deduction
3.
 |_ (  )  (  )
Tautology/Axiom
4.
 |_   


2, 3, MP
5.
 |_ 


trivial
6.
 |_ 


4, 5, MP
 

An Equivalent Theorem
 |_    |_  
Proof 
1.
 |_ 


Assumption
2.
 |_   


Deduction
3.
 |_ (  )  (  )
Tautology/Axiom
4.
 |_   


2, 3, MP
5.
 |_ 



trivial
6.
 |_ 


4, 5, MP
 

Notice that both proofs are quite symmetrical. So the converse holds in each case.
