Week Six
Undecidability of Formal Arithmetic 
 
Church’s Thesis
We have an intuitive notion of computability. We think it makes sense to say that some functions can be effectively computed or evaluated according to some algorithm or by some machine. There have been many attempts to make this notion formal – through the idea of a Turing Machine (a type of essential computer) or by Church’s idea of a -calculus, or by the class of recursive functions. 

Church’s Thesis (or the Church-Turing Thesis) is the claim, now nearly universally accepted, that all these approaches give us the same class of functions. In particular we will claim that:
Claim

Every effectively computable function is recursive.
 

Recursive Functions
Roughly speaking, a recursive function (of one or more variables) is such that its value at a given argument is expressed in terms of its values at smaller arguments or in terms of "simpler" functions. For example, the function f defined by
f(0) = 1, f(1) = 1, f(x+2) = f(x+l) + f(x),
which gives the Fibonacci sequence 1, 1, 2. 3, 5, 8, 13, ... is recursive. This Fibonacci function can be also defined directly:

x+1
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However not all recursive functions can be defined algebraically like this.   
The class of recursive functions is defined as the class of functions that can be constructed from a small set of basic functions (called the initial functions) by the repeated application of a small number of operations on those functions.

Definition. 

The initial functions are the following:
a. zero function, Z(x) = 0 for all x  N,

b. successor function. S(x) = x+1 for all x  N,
c. projection functions, Uin(x1, …, xn) = xi for all x1, ..., xn x  N; one function for
each n and i where n = 1, 2, 3, ... and 1  i  n.
d. the integers, k for each k  N.  (These are numbers, not functions, but for our
purposes it is convenient to include them as "initial functions".)
The three operations with which we shall be concerned are the following:

1.
Substitution.


Suppose functions g(y1, ..., ym), h1(x1, ..., xn),..., hm(x1, .... xn) are given.

The function f defined by f(x1, .... xn) = g(h1(x1, ..., xn),..., hm(x1, .... xn)) is said to be obtained from g and h1, .... hm by substitution.

2.
Recursion.
Consider the simplest case first. A function h(x1, x2) is given, and a number k.   The function f defined by
f(0) = k, f(y+1) = h(y, f(y))
is said to be obtained from h and k by recursion.   Assuming h is defined every​where, it is simple to check by mathematical induction that then f(y) is well defined for all y.

Slightly more complicated is the next case, which involves a parameter x. Two functions g(x) and h(x1, x2, x3) are given: the function f(x1, x2) where

f(x, 0) = g(x), f(x, y+1) = h(x, y, f(x, y))

is said to be obtained from g and h by recursion.


Again, if g and h are defined everywhere then by induction f(x, y) is defined for all y.

Finally, we can allow any number of parameters x1, ..., xn instead of just x. This gives the all-embracing definition: Suppose functions g(x1, ..., xn), h(u1, ..., un+2) are given. The function f defined by

f(x1, ..., xn, 0) = g(x1, …, xn), f(x1, ..., xn, y+l) = h(x1, ..., xn, y, f(x1, ..., xn, y))
is said to be obtained from g and h by recur​sion. In this general definition we shall allow n = 0 (i.e. no parameters), with the understanding that a function g of no variables means some fixed constant k. (This is to cover the first case above.)
3.
-operator.
Let g(x1, ..., xn, y) be a function such that for all x1, ..., xn there is y such that 

g(x1, ..., xn, y) = 0. Then, by definition,

y(g(x1, ..., xn, y) = 0) is the least y such that g(x1, ..., xn, y) = 0.

Here  is called the least number operator. For such a function g, the function f where
f(x1, ..., xn, y) = y(g(x1, …, xn,y) = 0)

is said to be obtained from g by the -operator.

We can now define the class of recursive functions: a function is recursive if and only if it can be obtained from the initial functions by a finite number of applications of the operations of substitution, recursion and -operator. This can be expressed more formally.

Definition. 

The function f is a recursive function if there is a finite sequence fi, f2, f3, …, fn of functions such that fn = f and for each i (1  i  n) either fi is an initial function or fi is obtained from entries earlier in the sequence by substitution, recursion or the -operator.
Example 1
The function d, where d(0) = 0, d(x) = x - 1 if x > 0. We can define d by recursion from 0 and U12 as follows:

D(0) = 0, d(y+1) = U12(y, d(y))

So the sequence 0, U12, d shows that d is recursive.

Example 2

Addition: the function ADD where ADD(x, y} = x + y. Since addition can be defined recursively by x + 0 = x, x + (y + 1) = (x + y) + 1 we can use the recursion rule to obtain ADD:

ADD(x, 0) = x = U11(x),


ADD(x, y + l)
= ADD(x, y) + l



= S(ADD(x, y))



= S(U33(x, y, ADD(x, y))).

So if we put h1(x1, x2, x3) = S(U33(x1, x2, x3)) (which is recursive by the substitution rule applied to S and U33), the sequence U11, S, U33, h1, ADD shows ADD is recursive.
Example 3

Multiplication: the function MUL where MUL(x, y) = xy. Since multiplication can be defined by x0 = 0, x(y + 1) = xy + x, we are led to the following:

MUL(x, 0) = 0 = Z(x)


MUL(x, y + l} 
= ADD(x MUL(x, y))




= ADD(U13 (x, y, MUL(x, y)), U33 (x, y, MUL(x, y)))

so if h1(x1, x2, x3) = ADD(U13 (x1, x2, x3), U33 (x1, x2, x3)) the sequence Z, U11, U33, h1, ADD, U13, h2, MUL shows MUL is recursive.

Notice that in Examples 2 and 3, to define a function f of two variables by recursion from functions g and h requires that g is of one variable and h of three variables. But we wanted to use an h of one variable in Example 2 (h(x) = S(x)) and of two variables in Example 3 (h(x1,x2) = ADD(x1,x2)). These we built up to three variables by using the projection functions. This can always be done.
Representability

Consider the equality relation = on N. For m, n  N: if m = n then FA |_ m  n, if m  n then 

FA |_  (m  n). We say that the equality relation of N is represented by the formula v0  v1 of FA.
Definition A
In general, let R(n0, …, nk-1)  Nk be any k-place relation on N. 

Say R is represented by (v0, …, vk-1) of FA provided 

i. if R(n0, …, nk-1) is true, then FA |_ (n0, …, nk-1)
ii. if R(n0, …, nk-1) is false, then FA |_ (n0, …, nk-1)

Theorem

Every recursive relation on N is representable in FA.
Definition B
Let f(n1, …, nk) be a function from Nk to N 

Say f is representable in FA iff there is a wff (v1, …, vk+1) of FA for which

i. if f(n1, …, nk) = m, then FA |_ (n1, …, nk, m)

ii. FA |_ ((!vk+1)(n1, …, nk, vk+1)
Example

The Zero function Z(x) = 0 is represented by (v1  v1)  (v2  0)


If Z(n1) = n2 then n2 = 0 and FA |_  (n 1  n 1)  (0  0)


It’s also easy to see that FA |_ ((!v2)( (n 1  n 1)  (v2  0))

Example

The successor function S(x) = x+1 is representable – by v2  v1’

Suppose S(n1) = n2, then 
n2 = n1 + 1.




So
n2  n1’




So
FA |_ n2  n1’


And we know that ((v2)(v2  n1’)

Example

The projection function Ujn(x1, …, xn) = xj is represented by (v1  v1)  (v2  v2)  (vk+1  vj)


Suppose Ujk (n1, …, nn) = m, then 
m = nj




So
FA |_ (n1  n 1)  (n 2  n 2)  (m  n j)




And
FA |_ ((vk+1)((n1  n 1)  (n 2  n 2)  ( vk+1  n j))

Remark


Any formula (v0, …, vk) defines a relation on N, namely 

# = {(n0, …, nk)  Nk+1 : N |= (n0, …, nk)}

Where N is the standard model for FA – i.e. the structure < N, =, ', +, …, 0 >

Now, if R(n0, …, nk) is represented by (v0, …, vk), then we have R = #. 

For if R(n0, …, nk) is true then FA |_ (n0, …, nk)

So N |= (n0, …, nk)

So (n0, …, nk) #

And if R(n0, …, nk) is false then FA |_ (n0, …, nk)

So N |= (n0, …, nk)

So ~ N |= (n0, …, nk) 

So (n0, …, nk) #
Gödel Numbering
Associate with each symbol, s, of the language, L, the language of FA, a number ┌s┐.
(        )                                 X0        f0        P0           
                                                   X1        f1        P1        
                                                      ...         ...        ...               
 

1       2        3           4         5          6          7          8    
                 39                    59        69         79        89
                                                   699       799      899
                                                       ...         ...         ...
 

Associate with each sequence of symbols from L a number, thus:
┌< si | i = 1, ..., n >┐ = Concatenationi = 1, ..., n ┌si┐ 
For example

        ┌(v0)(v1v0)┐ = 1362169562
It's clear that each sequence receives a unique identifying number.
Thus each formula and proof becomes a number that can be talked about in L.
Note:
f0 = 0
┌0┐ = 7
f1 = '
┌ ' ┐ = 79
f2 = +
┌+┐ = 799
f3 = .
┌.┐ = 7999
P0 = 
┌┐ = 8
For interest’s sake only, here is the type of gödelization that was actually used by Gödel.

(        )                                 0        ‘        +        .                v0        v1        v2   …

1       3        5          7          9       11      13      15      17     19         2         4          6   …  

For each sequence of symbols S = < si | i = 1, ..., n >
┌S┐ = i = 1, ..., n pi┌si┐ where pi is the ith prime.
For example

        ┌(v0)(v1v0)┐ = 21 35 52 73 111 134 179 192 233
Note:
1.
Different gödel numbers are assigned to different sequences
2.
It is effectively calculable what ┌t┐ is for any t.
3.
It is effectively decidable whether n is ┌t┐ for some t. 
All relations like:
R1(m, n):
‘n is the Gödel number of m’

R2(m):

‘m is the Gödel number of a formula’

R3(m):

‘m is the Gödel number of an axiom of predicate calculus’

R4(m, n, p):
‘p is the Gödel number of a formula which is a consequence by MP of formulae with Gödel numbers m and n’

R5(m, n):
‘m is the Gödel number of a proof of the formula with Gödel number n’

Are effectively decidable, and thus have recursive definitions, and thus are representable in FA

-Consistency
Definition
The collection  of sentences is said to be -consistent provided 
for every formula (v), if  |_  (n) for every n  N, then ~  |_  (v(v). 
Fact

Note that if  is -consistent then  is consistent (but in fact the converse is false.) 

Proof
Take any formula (v): 

either for some n  N ~  |_ (n), 
or for all n we have  |_ (n), so by -consistency ~  |_  (v(v).

In either case there is an unprovable formula, so  is consistent.
Gödel’s First Incompleteness Theorem
Theorem


If FA is -consistent then there is a formula  such that ~ FA |_  and ~ FA |_ 

(Such a formula is said to be undecidable in FA. 

A set of formulae  is said to be complete if no formula is undecidable in .)
Proof
For x, y, z  N let Pf (x, y, z) be the relation ‘y is the Gödel number of a formula (v1) with just v1 free, and x is the Gödel number of a proof  of the formula (z)’
Then Pf (x, y, z) is representable in FA, say by the formula Pf (v0, v1, v2)

Consider the formula (v1) : (v0 Pf (v0, v1, v1).

Let ┌(v1)┐ = u, and take the sentence (u) : (v0 Pf (v0, u, u).
We shall show that (u) is undecidable.

Note that since u is the Gödel number of (v1) it follows that Pf (m, u, u) is true iff m is the Gödel number of a proof of (u).

Note the interpretation of (u) in the standard model: 

N |= (u) 
iff
N |= (v0 Pf (v0, u, u)



iff
it is not the case that there is m  N such that 




Pf (v0, u, u) is true in N when v0 is assigned m



iff
it is not the case that there is m  N such that 




N |= Pf (m, u, u), since the interpretation of m is m



iff
it is not the case that there is m  N such that 

Pf (m, u, u) is true 

(by the Remark above, since Pf represents Pf so Pf # = Pf)


iff
there is no m  N such that 

m is the Gödel number of a proof of (u)





iff
~ FA |_ (u)

Now suppose FA is -consistent (and therefore consistent.)


(A)


Suppose (for a contradiction) that FA |_ (u); then FA |_ (v0 Pf (v0, u, u)


Since FA |_ (u) there is a proof of (u), and this proof has a Gödel number, m, say.


So m is the Gödel number of a proof of (u).


Thus Pf (m, u, u) is true.


Since Pf represents Pf, this means that FA |_ Pf (m, u, u).


Thus FA |_  (v0 Pf (v0, u, u).


But also FA |_  (v0 Pf (v0, u, u).


So this contradicts the consistency of FA.


So ~ FA |_ (u)


(B)


Suppose (for a contradiction) that FA |_ (u); then FA |_ (v0 Pf (v0, u, u) 

and so FA |_ (v0 Pf (v0, u, u)


Since FA |_ (u) by consistency ~ FA |_ (u).


So for all m  N, m is not the Gödel number of a proof of (u).


Thus, for all m  N, it follows that Pf (m, u, u) is false. 


Since Pf represents Pf, for all m  N, FA |_ Pf (m, u, u).


Hence, by -consistency, ~ FA |_ (v0 Pf (v0, u, u), 


And so ~ FA |_ (v0 Pf (v0, u, u).


This contradicts that FA |_ (v0 Pf (v0, u, u).


Thus ~ FA |_ (u)

Remarks

1. It can be shown also that if FA is consistent then FA is incomplete.
2. Note that (u) is true but unprovable. (We said above that N |= (u) iff ~ FA |_ (u).)

3. Suppose  is any collection of formulae in the language of FA such that FA   and the relation 
‘n is the Gödel number of a sentence in  ‘ is recursive. Then the incompleteness theorem applies to : if  is (-)consistent then  is incomplete.
The proof is almost the same – let Pf (x, y, z)  N3 be the relation ‘y is the Gödel number of a formula (v1) with just v1 free, and x is the Gödel number of a proof from  of (z).’ 
Since the relation ‘n is the Gödel number of a sentence in ’ is recursive, Pf will be representable in FA, and a similar argument works.

4. Hence the relation ‘n is the Gödel number of a sentence which is true in N is not recursive, because the set of sentences which are true in N is complete.

5. You cannot make FA complete by adding (u) or (u) as an axiom. Although this would make the sentence provable, remark 3 shows that the set would still be incomplete.

Gödel’s Second Incompleteness Theorem
Consider the formula 0  1. FA |_ 0  1 iff FA is inconsistent.

Let Pff (x, y)  N2 be the relation ‘x is the Gödel number of a proof of the formula with Gödel number y’, and let Pff (v0, v1) represent Pff (x, y).

Put n = ┌ 0  1 ┐ and write con for the sentence (v0 Pff (v0, n).

Then N |= con iff FA is consistent.
Theorem


If FA is consistent, then ~ FA |_ con

(Thus FA cannot prove itself consistent.)

Proof

To prove this you formalise part A of the previous proof in FA.


You find FA |_ (con  (u))


So if FA |_ con, then FA |_ (u) by MP

But we know that ~ FA |_ (u).
