Week Four
Numbers 
 
 

Peano's Postulates
P1.
0 is in N (the Natural numbers.)
P2.
If x is in N there is x' in N called the successor of x
P3.
0  x' for any x in N 
P4.
x' = y'  x = y
P5.
(Induction) Let P be a property that natural numbers can have.
If 
(i)
0 has property P and
(ii)
whenever x in N has property P, x' has property P, 
then 

for all x in N x has P
These are postulates for Arithmetic. Now, how do we construct a logical system in which we can talk about Arithmetic?

 

We want a language, L, suitable for a theory of natural numbers, S. 
We shall give L
1.
Predicates: '=' for equality (write 'a = b' not' =(a,b)')
2.
Functions: " ' ", '+', '.' for successor, adition, multiplication. (write a', a + b, a.b)
3.
A constant '0'
 

In L we can write the following axioms for FA (Formal Arithmetic)
S1.
(x1)((x2)[x1 = x2  (x1 = x3  x2 = x3)]
S2.
(x1)((x2)[x1 = x2  x1' = x2']

S3.
(x1)[(0  x1')]
S4.
(x1)((x2)[(x1' = x2')  (x1 = x2)] 
S5 
(x1)[x1 + 0 = x1]
S6.
(x1)((x2)[(x1 + x2') = (x1 + x2)']
S7.
(x1)[x1.0 = 0]
S8.
(x1)((x2)[x1.x2' = (x1.x2 + x1)]
S9.
(0) a wff in S, (0)  [x((x)  (x'))  x(x)]
This is an axiom schema . The Principle of Induction.
Generally speaking S1 and S2 are not listed as axioms. On the other hand the following axiom is sometimes added (corresponding to P2 above:)


(x1) ((x2)((x1 = 0)  (x2' = x1))
Useful Theorems
 

T1.
t = t
P.
1.
t + 0 = t



S5
2.
(t + 0 = t)  (t + 0 = t  t = t)
S1  
3.
t + 0 = t  t = t


1, 2, MP
4.
t = t



1, 3, MP         
T2.
t = r  r = t  
P.
1.
t = r  (t = t  r = t)

S1
2.
t = t  (t = r  r = t)

1, Tautology
3.
t = r  r = t


2, T1, Taut.
T3.
t = r  (r = s  t = s)  
P.
1.
r = t  (r = s  t = s)

S1
2.
t = r  r = t


T2
3.
t = r  (r = s  t = s)

1, 2, Taut.
Models for S
It can be shown that the axioms of equality are theorems of S. I.e. S is a 1st-order theory with equality.
By design, the structure N = < N, =, ', +, ., 0 > is a model for S. N is the Standard model. 
Any model not isomorphic to N will be a Nonstandard model
Definition:    The terms 0, 0', 0'', ... are the numerals. We shall denote them by 0, 1, 2, ...
 

Theorem
Let m, n  N. 
1.
i.
m  n  m  n
ii.
m + n = m + n, m.n = m.n
2.
Any model for S is infinite
3.
For any cardinal number, , S has a normal model of cardinality of .
Proof
For 1.i 
Assume wolog m < n, and assume that m = n
1.
0m = 0n


Hypothesis
2.
0 = 0n-m


m x S4
3.
t = n - m -1

Hypothesis
4.
0 = t'


2
5.
0  t'


S3
6.
0 = t'  0  t'

4, 5, I
7.
m = n |_ (0 = t'  0  t')
1, ..., 6
8.
m  n


RAA
For 1.ii 
Prove by induction  m + 0 = m, thus m + 0 = m + 0
Assume m + n = m + n,
then (m + n)' = m + n' by S2, S6
but m + (n + 1) = (m + n)' and n + 1 = n', 
thus m + (n + 1) = m + n + 1
For 2
The objects for numerals must be distinct, and there are 0 numerals.
For 3
An application of Lowenheim-Skolem (see later.)
Theorems on Numerals
 

 TN1.
t + 1 = t
P.
1.
t + 0' = (t + 0)'

S6   
2.
t + 0 = t


S5
3.
(t + 0)' = t'

2, S2
4.
t + 0' = t'


1, 3, T3
5.
t + 1 = t'


def.
TN2.
t . 1 = t
P.
1.
t . 0' = t . 0 + t

S8   
2.
t . 0 = 0


S7
3.
t . 0 + t = 0 + t

2, T5
4.
t . 0' = 0 + t

1, 3, T3
5.
0 + t = t


T6, T2
6.
t . 0' = t


4, 5, T3
7.
t . 1 = t
TN3.
t . 2 = t + t 
P.
1.
t . 1' = t . 1 + t

S8
2.
t . 1 = t


TN2
3.
(t + 1) + t = t + t

2, T5
4.
t . 1' = t + t

1, 3, T3
5.
t . 2 = t + t
TN4.
t + s = 0  t = 0  s = 0
P.
Use induction for (y): x + y = 0 x = 0  y = 0
(0) is trivial
Now prove for (y') given (y)
1.
(x + y)'  0

S3, T2
2.
x + y'  0

S6
It follows that (y') by an application of the tautology 
Thus y(y)
Completeness and Cardinality Theorems 
 
 

Definition
We now introduce a concept that could have been introduced for the propositional calculus, but will be much used from now on.

 is inconsistent iff there is  such that  |_  and  |_ 
Gödel-Henkin Completeness Theorem
Theorem
Let  be a set of formulae of a finite language L. If  is a sentence satisfied in every model of  (i.e.  |= ) then  |_  (i.e. there is a proof of  from  in QS.
Proof
To prove this we require the result that every consistent set of formulae is satisfiable in some model. Given this we can then prove the theorem by contraposition as follows:
Suppose ~  |_ , then    is consistent so we will suppose it has a model A and assignment a which satisfies it, but then A |= , i.e. A | , so  | 
Lindenbaum's Lemma

Theorem 1
Let  be a consistent set of formulae, then if ~  |_ , for some sentence ,    is consistent.
Proof 1 
Suppose    is inconsistent, i.e. for some ,    |_  and    |_ 
then  |_    and  |_    by Deduction Theorem
but (p  q)  ((p  q)  p) is a theorem of PS  
so, by MP,  |_ 
Definition
Call a set of formulae, , of a finite language, L, full iff 
for each sentence  of L either  or .
Corollary
If  is full either  |_  or  |_ . for all sentences  in the language of . 
Theorem 2 (Lindenbaum's Lemma)
If  is a consistent set of formulae then there exists a full, consistent extension of , *. 
Proof 2
List all the sentences of L: 1, 2, ...
Define a sequence 0, 1, 2, ... where 
0 = 
 and





n+1 = 
n if n |_ n+1,
       

n  n+1 otherwise
Define * =  n
* is consistent since if we suppose otherwise then * |_  and * |_  for some sentence ; 
but then, since proofs are finite, there must be some finite m such that m |_  and m |_ , 
i.e. m is inconsistent for some m. 
But this cannot be, since we guaranteed by our construction and theorem 1, that each of the i are consistent.
i.e. * is full, since by our construction, either * |_  or * |_  for any .
Theorem 3
If  is a consistent set of formulae then  has a model.
Proof
Wolog we will suppose the formulae of  are constructed using only , , and  as logical symbols.
Step 1:
Expand the language L to include a countably infinite set of new constant symbols 


{B1, B2, ...}
Claim:
This will have no effect on the consistency of .
Step 2:
For each wff m in the original language L and each variable vi construct the formula

n :  vim  m(vi|Bn)

using a new constant symbol Bn. We say that bn is a witness for m.
Claim:
There are countably many i so we can list them.
Define:
A sequence 0, 1, 2, ... where 
0 =  and

n+1 = n  n+1 

 =  n
Claim

 is consistent
Proof 

Suppose not, then one of the n must be inconsistent with n-1 and n-1 consistent
i.e n-1 |_ (vim  m(vi|Bn)) for some i, m
but then n-1 |_ vim and n-1 |_ m(vi|Bn)
Now, since by construction Bn does not appear in any of the formulae of n-1, 

a proof from n-1 to m(vi|Bn) must use axiom schema QS2 and MP.
i.e. n-1 |_ vim, which is the negation of (*).
But this contradicts our assumption that n-1 is consistent. 
So, by RAA,  is consistent.  
 

Step 3
By Lindenbaum's Lemma we can extend  to a full consistent set *.
Now, for any sentences  and  the following are true:
i.
 * iff * |_ 

by construction.
ii.
* |_  or * |_ 
by fullness.
iii.
* |_  iff ~ * |_ 
by ii and consistency.
Step 4:
Now define the structure A = <A, ... > a model for * as follows: 
a.
A = {t1, t2, ... } the set of all possible terms of the new language.
b.
Define the binary relation E on A
< u, t >  E iff the wff (ut) *
c.
For each n-place predicate symbol Pi define the n-ary relation Ri by:
< t1, t2, ..., tn >  Ri iff P(t1, t2, ..., tn) *
d.
For each n-place function symbol Fi let fi be the function defined by:
fi(t1, t2, ..., tn) = Fi(t1, t2, ..., tn)
e.
For each constant symbol Ci let Ci[a] = Ci and Bi[a] = Bi 
and for variables a = < v0, v1, ... > so that for any term t, t[a] = t.
 

Now, for any wff  let  * be the result of replacing the equality symbols in  by the two place predicate letter E.

Claim

Val (*,A, a) = T iff  *
Proof
By induction on the length of  
Atomic Formulae: 

if * = Pi(t1, ..., tn) for some n-place predicate Pi and terms tj, then
Val (*,A, a) = T iff < t1[a], ..., tn[a] >  Ri
iff Pi(t1, ..., tn) * by step 4.
If * = uEt then 

Val (*,A, a) = T iff < u[a], t[a] >  E
iff ut * by step 4.
Negation: 

Val (*,A, a) = T iff Val (*,A, a) = F



iff * by induction hypothesis





iff * by fullness
Conditional
Val (()*,A, a) = T iff Val (*,A, a) = F or Val (*,A, a) = T
iff * or *
iff * or *
iff * |_ 
iff  *
Quantification
We need to show Val (v*, A, a) = T iff v*
()

There will be a n * of the form v  (v|B) for some constant B
So (*) (v|b)  v* by contraposition
Now suppose Val (v*, A, a) = T 
then Val (*(v|B), A, a) = T
so (v|B) * by induction hypothesis
i.e. v * by (*), MP
()

Suppose Val (vi*, A, a) = F
then Val (*,A, a(i|t)) = F for some t
so Val (*(vi|t), A, a) = F 
(where, if t is not substitutable for vi in * we can change the variables so it is)
i.e. (vi|t)* by induction hypothesis
but then vi*
So we have shown by induction on the construction of  that Val (*,A, a) = T iff  *
If our original language did not contain the equality symbol then we are finished, because we can restrict A to the original language to get a model for it.
