Week Five
Completeness with Equality 
 

 Note that, in the vocabulary of the completeness proof just given, if  contains a sentence C  D for C, D, symbols in L, then our interpretation will give us Val (E(C, D), A, a) = T, 
but it is not guaranteed that CA = DA. 
We need to find a structure, B, that will yield CB = DB.
It is claimed that it is possible to extend the proof to languages with equality by forming the Quotient Structure of A modulo E.
Note that:
1.
E is an equivalence relation on A ( A = | A | )
This follows from the properties of I1, I2, I3 for '' in L
I1:
v0(v0  v0)
I2:
v0v1((v0  v1)  (v1  v0))
I3:
v0v1v1((v0  v1)  (v1  v2)  (v0  v2))
2.
For each predicate symbol P in L, where PA = R
<to, ..., tn>  R and ti E ti'  <to', ..., tn'>  R 
because of the property of '' that 
v0,1...v0,nv1,1...v1,n  in (v0,i  v0,n)  (P(v0,1...v0,n)  P(v1,1...v1,n))
3.
For each function symbolF in L, where FA = f
ti E ti'  f(to, ..., tn) E f(to', ..., tn')
because of the property of '' that 
 in (v0,i  v1,n)  (F(v0,1...v0,n)  F(v1,1...v1,n))
These facts being so, we form the Quotient Structure A/E as follows:
1.
| A/E | is the set of [t] for all t in A ( = | A | ) where
[t] is the equivalence class for t under the relation 'E'.
2.
For each predicate symbol P, where PA = R
< [t0], ..., [tn] >  PA/E  < t0, ..., tn >  R
3.
For each function symbol F, where FA = f
FA/E ( [t0], ..., [tn] ) = [f (t0, ..., tn) ]
4.
For each constant symbol c, where cA = c
cA/E = [c]
Note that EA/E is suited for the equality relation on | A/E | because
[t] EA/E [t']  tEt'  [t] = [t']
Now, let us define the homomorphism
h: | A |  | A/E | as:
h(t) = [t]
Then, for any :
* 
 Val (*,A, a) = T
                             
 Val (*,A /E, h(a)) = T 
 Val (,A /E, h(a)) = T 
In the final step of that deduction we could introduce the '' symbol to L 's formulae because EA/E is an equality relation.
If we now restrict the structure A/E to the original language L we find it satisfies all members of  with the assignment h(a).
Compactness
 

Theorem
(a)
 |= for some finite 0  , 0 |=  
(b)
(For all finite 0  , 0 is satisfiable) is satisfiable.
 Proof
(a)
 |= 
 |_ by completeness
0 |_ for some finite 0   because proofs are of finite length.  
0 |= by soundness
(b)
All finite subsets of  are satisfiable 
All finite subsets of  are consistent, by soundness.
 


 is consistent, by the finiteness of proofs.
 is satisfiable, by completeness.
Löwenheim-Skolem Theorem
 

Theorem
(a)
Let  be a satisfiable set of formulae in a countable language, L; then  is satisfiable in some countable structure.
(b)
Let  be a satisfiable set of formulae in a countable language, L, for which #( L) = ; then  is satisfiable in a structure of cardinality  . 
Proof
(a)
is just a special case of (b) where  = 0. (0 is the cardinality of the Naturals.)
(b)
 is consistent since it is satisfiable. That follows from soundness.
If  was inconsistent then  |_  and  |_  for some and  |=  and  |=  which 

is impossible.
We have a proof of completeness for a language with cardinality  that proceeds by 

creating a structure A which has a cardinality at least , because that is the number of 

new constant symbols that are added to L to create L '.
Note that the cardinality of the expressions in L ' is also  because for any infinite set A, 
#(A) = בֿ , the set of finite length sequences of elements of A also has cardinality בֿ.
For the case of a language with equality we created the quotient structure A/E consisting of equivalence classes of elements of | A |. Thus #( | A/E | )  #( | A | ) = 
  
Examples
 

 1.
The theory of Real numbers has a countable model.
The Real numbers are a field, and are such that they satisfy the axioms of a field, which can be stateed in a countable language L.
 

2.
The axioms of most forms of set theory, e.g. Zermelo-Frankel, allow one to prove that there are uncountable sets. The continuum, for example.
Z-F has a countable model Z by Löwenheim-Skolem. 
How is this possible? This is Skolem's Paradox. 
The key to understanding it is to see that in Z itself there may be nothing that satisfies the formal definition of a 1-1 map from the natural numbers to the universe, even if there is such a function outside Z.  
Z is simply too poor a model to include all bijections.
 

Löwenheim-Skolem-Tarski Theorem
 

Theorem
(a)
Let  be a set of formulae in L with cardinality . Assume  is satisfiable in some structure of infinite cardinality; then for any cardinal בֿ. with   בֿ. there is a structure of that cardinality to satisfy.
Proof
Let A be an infinite structure satisfying .
Add to L new constant symbols in B = {Bi}, # (B)  = בֿ. 
Let T = {(Bi  Bj) : Bi  Bj, Bi, Bj  B}
Every finite subset  of  T is satisfiable in A.
If  ' =  {(Bix  Biy) : ix, iy  iz} then expand A to get A ' = (A, A1, ..., Az) with distinct Ai. 
A ' mod(')  A ' mod()
Apply compactness theorem to show that  T is satisfiable.
By (Downward) Löwenheim-Skolem theorem it is satisfiable in structure B, where #( | B | )  בֿ.
Note that #( | L' | ) = #( | L | ) + #( B ) =   בֿ. = בֿ
But from the extra axioms in T it is clear that if B mod(T) then #( | B | )  בֿ.
Therefore #( | B | )  בֿ.   
Finally, we can restrict B to the original language L so that it is a model of 
 

Example
 

The Theory of Arithmetic defined by Peano's axioms has a countable model N. It is the standard model of Arithmetic with the appropriate cardinality 0 of the Natural numbers.
By the (Upward) Löwenheim-Skolem-Tarski Theorem there are also models of all cardinalities greater than 0. Obviously, those models are not isomorphic to N.  
 
Corollaries
Corollary 1
(a)
Let  be sentences in a countable language.
If  has a model of infinite cardinality then it has models of every infinite cardinality.
(b)
A an infinite structure for a countable language.
For any infinite cardinality, בֿ, there is a structure B, #( | B | ) = בֿ, and B  A 
Proof
(a)
Follows from L -S-T.
Put בֿ = 0 and note that 0 is the least infinite cardinal.
(b)
Follows from (a)
Put  = Theory(A), where that means the set of all sentences true in A 
 
Corollary 2

 has arbitrarily large finite models has an infinite model
Proof
For each k  2 construct k as a translation of 'there are at least k things'.
2 = v0v1(v0v1)
3 = v0v1v2(v0v1)(v1v2)(v0v2)    
etc.
Let ' =  {2, 3, ...}
Any finite subset has a model.
Therefore, by compactness, ' has a model which is infinite.
Therefore  has a model which is infinite.            
Non-Standard Analysis
Definition: 
Let A be a structure. The Theory of A, (A), is the set of all sentences in L that are true in A.
Strategy:
Show that given a language that is appropriate for, R, the Reals, and a theory for R, we can get a model for R that is not isomorphic to the standard model for R, and in which the notion of an infinitesimal is realised.
Begin by defining L. Be extravagant, we don't aim for parsimony.
Construct L, a language for 1st order logic with equality and 
i.
For each n-place relation R on R, a predicate symbol PR
ii.
For each n-place function f on R, a function symbol Ff
iii.
For each r in R, a constant symbol r
For this L we can apply the standard structure  R = < R, R, ..., f, ..., r, ... > which would be the standard model for a theory of the reals, (R).
We can show the existence of a non-standard model by use of the compactness theorem.
Consider the set 
            = (R)  {P<(r, v1): r in R} 
Any finite subset of  can be satisfied; all that is required is to choose some sufficiently large number in R to assign to v1.
By compactness, there is a structure A and an element a in | A | such that  is satisfied in A when v1 is assigned to a.
A is a model for (R)   
 

Claim

The function h: R  A defined as h(r) = rA is an isomorphism 
Proof
See tutorial 5.
 

Find R* isomorphic to A, for which R is in R*.
We shall replace each element rA  | A | by the element r  R ( = | R | ).
If we obtain an appropriate R* then, by isomorphism with A, there will be some b  | R* | such that R* will satisfy  when v1 is replaced by b.
Include in R* the following:
i.
R* = PRR * : the interpretation of PR in R*
ii.
F* = fFR * : the interpretation of fF in R*
iii.
r* = rR * = r 
Notes
1.
R may be considered as a 1-place relation on R. 
xPRx is true in R, so it will be true in R*, so take R* as | R* | 
2.
R  R* so R is the restriction of R* to R. 
3.
R  R* so F is the restriction of F* to R.
  

Given R* as defined, we know that R  R* because we have R* such that the interpretation of P<(r,v1) in R* is true for v1 =  for any standard r; i.e. r* <* .
So  is an infinitely large number.
So 1/ (if it is defined) is an infinitely small number.
 

Definitions
1.
F = {x  R*: |x|* <* y for some y  R} 
The finite elements of | R* |
2.
I = {x  R*: |x|* <* y for all y  R+} 
The infinitesimals of | R* |
Properties
1.
F is closed under +*, -*, .*
If x, y, are finite then a, b  R | x |* <* a, | y |* <* b 
| x * y |* * | x |* + | y |* < a + b
| x .* y |* < a + b
2.
I is closed under +*, -*, and multiplication by finites.
If x, y, are infinitesimals then a  R* | x |* <* a/2, | y |* <* a/2
| x * y |* <* a/2 + a/2
If z is finite then b  R | z |* <* b
 

Now | x |* <* a/b so |x .* y |* <* (a/b)a = a
  

Definition:    
x is infinitely close to y, x  y, iff x -* y  I
 

Theorem:
 is an equivalence relation on R*.
Proof:
(Reflexivity)    0  I  x -* x  I.
(Symmetry)    x -* y  I  y -* x  I because of closure under *.
i.e. the negative of an infinitesimal is also an infinitesimal.
(Transitivity)   x -* z = (x -* y) +* (y -* z)  I because of closure again.   
 

Theorem:       
If u  v and x  y, then u +* x  v +* y, and -*u  -*v
Proof:
(u +* x) -* (v +* y) = (u -* v) +* (x -* y)  I because of * closure. 
 

Theorem:
If u  v and x  y, and u, v, x, y  F, then u .* x  v .* y
Proof:
(u .* x) -* (v .* y) = (u .* x) -* (u .* y) +* (u .* y) -* (v .* y)
= u .* (x -* y) +* (u -* v) .* y
 I because of closure of I under multiplication by elements of F. 
 

Theorem:
If ~ (u  v) and x  F or y  F then q R x <* q <* r
Proof:

See tutorial 5

Theorem:
For any finite x there is a unique r  R such that x  r. 
Proof:

See tutorial 5

 

Definition
From the previous theorem we find that each x  F has a decomposition into a standard and a non-standard part.
            x = s + i for s  R, i  I 
Call s the standard part of x, st(x)  
 

Some results for st follow quite easily from previous demonstrations:
1.
st: F  R 
2.
x  I  st(x) = 0
3.
st(x +* y) = st(x) + st(y)
4.
st(x .* y) = st(x) . st(y)
    
Convergence
Definition
F: R  R. F converges to b at a iff (x)(x  a  F*(x)  b)
 

This definition is equivalent to the usual defnition of convergence, i.e.:
(x)(> 0)(> 0) [0 < |x - a| <   |b - F(x)| < ]
 

i.
Suppose F converges in the ordinary way.
Apply the method we mentioned earlier of proving properties of functions in R*. 
Note that the convergence is a statement in R and so if it holds in R it will hold in R*
Now, if x  a, x  a then 0  |x - a| <  so |b - F(x)| <  
Since  is arbitrary, b  F*(x).
ii.
Suppose it converges according to our new definition.
Then > 0  R we can make the ordinary statement of convergence true in R*  by taking 
 I.     
So it also holds in R.
 

It also follows that F is continuous at a iff x  a  F*(x)  F*(a)  
Derivatives
 

Reconstruct our notion of derivative given these definitions and results and a new understanding of the limit notion.
 

1.
If F converges then it converges uniquely
Suppose it converges to b, then if i I \ {0}, b = st(F*(a + i))
We call this the limxa F(x)
2.
Now, for F: R  R, a  R, the conventional definition goes:
F'(a) = limh0 [F(a + h) - F(a)] / h
Using the new definition of a limit
F'(a) = b iff dx  I \ {0} we have 
dF/dx  b (for dF = F*(a + dx) - F(a))
If b exists - if F'(a) exists - then 
F'(a) = st(dF/dx)              
 

Example
F(x) = x2
dF/dx = [(a + dx)2 - a2] / dx
= [2a(dx) + (dx)2] / dx  
= 2a + dx
= 2a  
